615 research outputs found

    Possible detection of singly-ionized oxygen in the Type Ia SN 2010kg

    Get PDF
    We present direct spectroscopic modeling of 11 high-S/N observed spectra of the Type Ia SN 2010kg, taken between -10 and +5 days with respect to B-maximum. The synthetic spectra, calculated with the SYN++ code, span the range between 4100 and 8500 \r{A}. Our results are in good agreement with previous findings for other Type Ia SNe. Most of the spectral features are formed at or close to the photosphere, but some ions, like Fe II and Mg II, also form features at ~2000 - 5000 km s−1^{-1} above the photosphere. The well-known high-velocity features of the Ca II IR-triplet as well as Si II λ\lambda6355 are also detected. The single absorption feature at ~4400 \r{A}, which usually has been identified as due to Si III, is poorly fit with Si III in SN 2010kg. We find that the fit can be improved by assuming that this feature is due to either C III or O II, located in the outermost part of the ejecta, ~4000 - 5000 km s−1^{-1} above the photosphere. Since the presence of C III is unlikely, because of the lack of the necessary excitation/ionization conditions in the outer ejecta, we identify this feature as due to O II. The simultaneous presence of O I and O II is in good agreement with the optical depth calculations and the temperature distribution in the ejecta of SN 2010kg. This could be the first identification of singly ionized oxygen in a Type Ia SN atmosphere.Comment: Submitted to MNRA

    On IC 10 X-1, the Most Massive Known Stellar-Mass Black Hole

    Full text link
    IC 10 X-1 is a variable X-ray source in the Local Group starburst galaxy IC 10 whose optical counterpart is a Wolf-Rayet (WR) star. Prestwich et al. (2007) recently proposed that it contains the most massive known stellar-mass black hole (23-34 M_sun), but their conclusion was based on radial velocities derived from only a few optical spectra, the most important of which was seriously affected by a CCD defect. Here we present new spectra of the WR star, spanning one month, obtained with the Keck-I 10 m telescope. The spectra show a periodic shift in the He II 4686 Ang. emission line as compared with IC 10 nebular lines such as [O III] 5007 Ang. From this, we calculate a period of 34.93+/-0.04 hr (consistent with the X-ray period of 34.40+/-0.83 hr reported by Prestwich et al. 2007) and a radial-velocity semi-amplitude of 370+/-20 km/s. The resulting mass function is 7.64+/-1.26 M_sun, consistent with that of Prestwich et al. (2007) (7.8 M_sun). This, combined with the previously estimated (from spectra) mass of 35 M_sun for the WR star, yields a minimum primary mass of 32.7+/-2.6 M_sun. Even if the WR star has a mass of only 17 M_sun, the minimum primary mass is 23.1+/-2.1 M_sun. Thus, IC 10 X-1 is indeed a WR/black-hole binary containing the most massive known stellar-mass black hole.Comment: 4 pages, 4 figures, submitted to ApJ

    PTF11kx: A Type Ia Supernova with Hydrogen Emission Persisting After 3.5 Years

    Full text link
    The optical transient PTF11kx exhibited both the characteristic spectral features of Type Ia supernovae (SNe Ia) and the signature of ejecta interacting with circumstellar material (CSM) containing hydrogen, indicating the presence of a nondegenerate companion. We present an optical spectrum at 13421342 days after peak from Keck Observatory, in which the broad component of Hα\alpha emission persists with a similar profile as in early-time observations. We also present SpitzerSpitzer IRAC detections obtained 12371237 and 18181818 days after peak, and an upper limit from HSTHST ultraviolet imaging at 21332133 days. We interpret our late-time observations in context with published results - and reinterpret the early-time observations - in order to constrain the CSM's physical parameters and compare to theoretical predictions for recurrent nova systems. We find that the CSM's radial extent may be several times the distance between the star and the CSM's inner edge, and that the CSM column density may be two orders of magnitude lower than previous estimates. We show that the Hα\alpha luminosity decline is similar to other SNe with CSM interaction, and demonstrate how our infrared photometry is evidence for newly formed, collisionally heated dust. We create a model for PTF11kx's late-time CSM interaction and find that X-ray reprocessing by photoionization and recombination cannot reproduce the observed Hα\alpha luminosity, suggesting that the X-rays are thermalized and that Hα\alpha radiates from collisional excitation. Finally, we discuss the implications of our results regarding the progenitor scenario and the geometric properties of the CSM for the PTF11kx system.Comment: 15 pages, 8 figures, 3 tables; submitted to Ap

    Late-Time Circumstellar Interaction in a Spitzer Selected Sample of Type IIn Supernovae

    Get PDF
    Type IIn supernovae (SNe IIn) are a rare (< 10%) subclass of core-collapse SNe that exhibit relatively narrow emission lines from a dense, pre-existing circumstellar medium (CSM). In 2009, a warm Spitzer survey observed 30 SNe IIn discovered in 2003 - 2008 and detected 10 SNe at distances out to 175 Mpc with unreported late-time infrared emission, in some cases more than 5 years post-discovery. For this single epoch of data, the warm-dust parameters suggest the presence of a radiative heating source consisting of optical/X-ray emission continuously generated by ongoing CSM interaction. Here we present multi-wavelength follow-up observations of this sample of 10 SNe IIn and the well-studied Type IIn SN 2010jl. A recent epoch of Spitzer observations reveals ongoing mid-infrared emission from nine of the SNe in this sample. We also detect three of the SNe in archival WISE data, in addition to SNe 1987A, 2004dj, and 2008iy. For at least five of the SNe in the sample, optical and/or X-ray emission confirms the presence of radiative emission from ongoing CSM interaction. The two Spitzer nondetections are consistent with the forward shock overrunning and destroying the dust shell, a result that places upper limits on the dust-shell size. The optical and infrared observations confirm the radiative heating model and constrain a number of model parameters, including progenitor mass-loss characteristics. All of the SNe in this sample experienced an outburst on the order of tens to hundreds of years prior to the SN explosion followed by periods of less intense mass loss. Although all evidence points to massive progenitors, the variation in the data highlights the diversity in SN IIn progenitor evolution. While these observations do not identify a particular progenitor system, they demonstrate that future, coordinated, multi-wavelength campaigns can constrain theoretical mass-loss models.Comment: 10 pages, 6 figures, accepted to AJ (with comments
    • …
    corecore